یونان باستان مساحت هر شکل هندسی را از را تربیع ان یعنی از راه تبدیل ان به مربعی هم مساحت بدست میاوردند.از این راه توانسته بودند به چگونگی محاسبه ی هر شکل پهلودار پی ببرند ان گاه که محاسبه ی مساحت دایره پیش امد دریافتند که تربیع دایره مساله ای نا شدنی مینماید.در هندسه ی اقلیدسی ثابت شده بود که نسبت محیط هر دایره به قطر ان عدد ثابتی است و مساحت دایره از ضرب محیط در یک چهارم قطر ان بدست می اید. و مساله بدان جا انجامید که خطی رسم کنند که درازای ان با ان مقدار ثابت برابر باشد رسم این خط ناشدنی بود. سرانجام راه چاره را در ان دیدند که یک مقدار تقریبی مناسب برای ان مقدار ثابت بدست اورند.
ارشمیدس کسر بیست و دو هفتم را بدست اورد که سالین دراز ان را به کار میبردند پس از ان و برای محاسبات دقیقتر کسر سیصد و پنجاه و پنج بر روی صد و سیزده را به کار بردند. اختلاف بین عدد پی و مقدار تقریبی سیصد و پنجاه و پنج بر روی صد و سیزده فقط حدود 3 ده میلیونیم است. ریاضی دان بزرگ ایرانی جمشید کاشانی برای نخستین بار مقدار ثابت نسبت محیط به قطر دایره را بدست اورد که تا 16 رقم پس از ممیز دقیق بود. این ریاضی دان و منجم مسلمان ایرانی توانست مقدار 2 را تا شانزده رقم اعشار در رساله ی محیطیه برابر: 6.2831853071795865 بدست اورد.
در جمله ی زیر هر گاه تعداد حرفهای کلمه ها را در نظر بگیرید مقدار عدد پی تا ده رقم پس از ممیز بدست خواهد امد:
خرد و بینش و اگاهی دانشمندان ره سرمنزل مقصود بما اموزد 3...1...4...1....5........9.......2......6......5. ....3....4..
همچنین اگر این معادله را برای حل کنید ریشه ی مثبت این معادله مقدار عدد پی را نشان میدهد